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A theoretical study of the potential–time response to sinusoidal current applied to static and dynamic
electrodes for regeneration processes is presented. Methods for determination of the regeneration
fraction, rate constant of the chemical reaction and heterogeneous kinetic parameters are proposed.
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In our two previous papers1,2, we have shown the importance of an alternating current
chronopotentiometry as a tool for investigation of reaction mechanism. The AC current
perturbation allows us to record the potential–time curve of the reoxidation process
under conditions when the oxidized species is not depleted at the electrode surface. In
contrast to DC programmed current3 it provides an additional information on the elec-
trode kinetics when both reduction and oxidation transition times can be used.

A sinusoidal current perturbation I(t) = I0 sin (ωt) is applied to various types of
electrodes – dropping mercury electrode (DME), static mercury drop electrode (SMDE)
and a plane electrode. For a DME the more rigorous model of an expanding sphere is
considered assuming advantageously the existence of a blank perion t1 ≥ 0 (ref.4). The
response of a static mercury drop electrode and a plane electrode can be derived from
transformed DME equations.

Although the treatment described in this paper is valid for any number of cycles of
the alternating current, it is more convenient to use only its first cycle since the transit-
ion time of oxidized or reduced species is always reached during the first cycle (before
or after the current changes its sign, respectively).

The dependence of the potential–time curves and of the reduction and oxidation tran-
sition times on the homogeneous rate constant and on the regeneration fraction is dis-
cussed for different regeneration mechanisms.

Regeneration Mechanism 1511

Collect. Czech. Chem. Commun. (Vol. 62) (1997)

* The author to whom correspondence should be addressed.



Finally, we propose methods for determination of the regeneration fraction, the rate
constant of the chemical reaction, as well as kinetic parameters of the heterogeneous
reaction.

THEORETICAL

For a regeneration mechanism, represented by the Eqs (A) and (B)

a A + n e       b B (A)

B       m A + other products , (B)

where kred and kox are the rate constants of forward and reverse reactions (A), the stoi-
chiometric coefficient a and b correspond to the cathodic and anodic reaction orders, k
is the first-order rate constant of the chemical reaction and coefficient m may have any
positive value. The associated boundary value problem is given by5
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and kred and kox are given by7,8

kred = kc
0 exp 





−αnF
νRT

[E(t) − Ec
0′]





(6)

kox = kc
0 exp 





α′nF
νRT

[E(t) − Ec
0′]




  , (7)

where Ec
0′ is the formal potential of the electrode reaction and kc

0 is the corresponding
rate constant. We assume that the charge transfer reaction remains rate-controlling over
the wide range of potentials involved (i.e. α′ = 1 – α) and that the stoichiometric
number ν = 1.

When an alternating current of the form

I(t) = I0 sin (ωt) (8)

is applied to a DME, the above problem may be solved by introducing the variables








ζ = CB + 
CA

m
φ = CB ekt








(9)

and proceeding as in refs1,9. Thus, if we assume

DA = DB = D (10)

we find that the surface concentrations of electroactive species are given by

CA(r0,t)
CA

∗  = 1 − aNDMEt1/2 [(1 − p)S + pX] (11)

CB(r0,t)
CA

∗  = bNDMEt1/2 X  , (12)

where
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NDME = 
2I0

nF A(ts)D1/2CA
∗ (13)

A(ts) = A0 ts
2/3 (14)

ts = t1 + t (15)

and the regeneration fraction p is defined by

p = 
mb
a

  . (16)

In Eq. (15), t1 is a time delay prior to application of the current and S and X in Eqs (11)
and (12) are functional series defined in Appendix, Eqs (A1)–(A6).

For a static mercury drop electrode, NDME is transformed to NSMDE according to Eq. (A13),
which becomes time-independent. Moreover, the S and X series in Eqs (11) and (12) for
an SMDE are simplified to Eqs (A14) and (A15) in Appendix.

When I0 and/or ω in Eq. (8) take values corresponding to CA → 0 at the electrode
surface before the current changes its sign, the reduction transition time, τA, is reached.
At this moment the experiment is stopped4 to avoid decomposition of supporting elec-
trolyte. Thus, by setting CA = 0 in Eq. (11), we obtain

τA
1/2 = 

(t1 + τA)2/3nF A0D
1/2CA

∗

2aI0 [(1 − p)S + pX]t=τA

  , (17)

where χ = kt and X is a power series of the rate constant of the chemical reaction. For
asymptotic solution see Appendix, Eq. (A11).

If the current density is not high enough to reach τA, the depletion of species B at the
electrode surface takes place after the current changes its sign and τB is always reached.
Under these conditions we obtain



X



t=τB

 = 0 (18)

by setting CB = 0 in Eq. (12). Here τB is the value of t for which the functional series X
is equal to zero. Note that τB does not depend on most of the experimental parameters
(i.e. I0, CA

∗ , A0), whereas τA does.
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Since the X series included in Eqs (17) and (18) contains all information about the
rate of the chemical step of the electrode process, both reduction and oxidation transi-
tion times depend on the kinetics of the chemical step and therefore may be used for
determination of the homogeneous rate constant k (see Results and Discussion).

The general expression for the potential–time response can be obtained by including
Eqs (11) and (12) in Eq. (4). Thus, we find

NDMED1/2

2ks
 sin (ωt) eαη(t) = (CA

∗ )a−1 

1 − aNDMEt1/2 [(1 − p)S + pX]




a
 −

− eη(t) (CA
∗ )b−1 



bNDMEt1/2X




b
  , (19)

where

η(t) = 
nF
RT

 (E(t) − Ec
0′)  . (20)

Note, that according to Eq. (19), the E–t curves depend on the concentration of species
A if NDME ts

2/3 (Eq. (13)) is fixed and the reaction orders a and b are different from
unity.

For a reversible process, Eq. (19) is simplified to

E(t) = Ec
0′ + 

RT
nF

 ln 
(CA

∗ )a−b 

1 − aNDMEt1/2 [(1 − p)S + pX]




a




bNDMEt1/2X




b   . (21)

This equation may be written in the form

E(t) = E1/2
r  + 

RT
nF

 ln 
2a−b 


1 − aNDMEt1/2 [(1 − p)S + pX]




a




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


b   , (22)

where E1/2
r  is the reversible polarographic half-wave potential given by10

E1/2
r  = Ec

0′ + 
RT
nF

 ln 






a
b





b

 




2
CA

∗




b−a



  . (23)

As can be noted from Eqs (21)–(23), the E–t curves obtained for a reversible process
depend on CA

∗  if NDME ts
2/3 is fixed and the reaction orders a and b are not equal. Con-

versely, when a = b, Eq. (21) becomes concentration-independent.
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Totally Irreversible Process

The following two cases can be described:
1. At condition I(t) > 0 (ωt < π), Eq. (19) is transformed to

E(t) = Ec
0′ + 

RT
αnF

 ln 
2ks (CA

∗ )a−1

NDMED1/2  + 
RT

αnF
 ln gC  , (24)

where

gC = 


1 − aNDMEt1/2 [(1 − p)S + pX]




a

sin (ωt)   . (25)

2. At condition I(t) < 0 (π < ωt < 2π), Eq. (19) becomes

E(t) = E0 − 
RT

(1 − α)nF
 ln 

2ks (CA
∗ )b−1

NDMED1/2  + 
RT

(1 − α)nF
 ln gA  , (26)

where

gA = 
− sin (ωt)




bNDMEt1/2X




b  . (27)

Moreover, as follows from Eqs (19)–(21) and (24)–(27), the potential–time response
obtained for this mechanism is always affected by the kinetics of the chemical step. It
does not depend on the degree of irreversibility of the charge transfer reaction, since
both A and B species involved in the electrode process take part in the chemical step.

RESULTS AND DISCUSSION

Equations presented in this paper are valid for any value of the regeneration fraction p.

General Cases

1. For p = 0, m = 0 (see Eq. (16)). The reaction scheme is simplified either to an EC
mechanism (discussed in ref.2) or to a charge transfer reaction (E process) for k = 0, χ = 0
(Eq. (A8)).

2. For 0 < p < 1, m < a/b and the regeneration of species A is only partial. As an
example we can mention the regeneration half reaction for which p = 0.5, in the reduc-
tion of oxygen on mercury in presence of catalase11,12.
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3. The value p = 1 corresponds to a total regeneration of species A, i.e. m = a/b,
refs13,14 and the response for this mechanism is influenced by the X series (Eq. (11)).
Detailed study of a catalytic mechanism with a = b = m = 1 is published in ref.15.

4. For p > 1, h > a/b and the regeneration of A exceed its starting level. An illustra-
tive example is the reduction of iodine in the presence of iodate on a platinum elec-
trode, where p = 1.2 (refs11,16).

The particular cases 2, 3 and 4 will be considered below.

Transition Times

As mentioned above, the transition time of the oxidized species is reached when CA(r0,τA) = 0.
For this condition, the value of NDME ts

2/3 given by Eq. (13) must be higher than a fixed
minimum value Nmin (ref.4) given by Eqs (11), (13) and (14)

Nmin = 




2I0

nF A0D
1/2CA

∗



min

 = 
1

aHmax
  , (28)

where Hmax is the absolute maximum of the time function of H defined as

H = [(1 − p)S + pX] 
t1/2

ts
2/3  . (29)

Note that Nmin depends on both the regeneration fraction p and the rate constant k
(X series) as well as on the frequency of the alternating current ω (S and X series).

When the current density is not high enough for the depletion of species A, τB is
always reached (after the current changes its sign) independently of the value of re-
generation fraction p. This behaviour is of great advantage in practice since it allows us
to work always under conditions at which τA or τB is reached. In this way, a relevant
kinetic information may be obtained from τA and τB due to their dependence on the
kinetics of the chemical step (see Eqs (17) and (18)). Although both τA and τB can be
used for determining the rate constant k of the chemical reaction, it is more convenient
to use the oxidation transition time τB. It is independent of most experimental para-
meters (i.e. I0, CA

∗  and electrode area) and of the regeneration fraction value p, in con-
trast to τA. In order to determine the rate constant k from τA, the regeneration fraction
value must be known, according to Eq. (17).

The rate constant k can easily be found from Fig. 1. The theoretical curves have been
obtained under conditions when A is not depleted at the electrode surface. The features
of the theoretical curves in Fig. 1 are identical to those found for a CEC process1. They
coincide with curves obtained for CEC and EC mechanisms with an irreversible chemi-
cal step.
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Once k is known, the regeneration fraction p can be found from τA using the theore-
tical curves in Fig. 2, for several values of p. These curves were obtained from Eq. (17)
when the transition time of species A is reached. Thus, we find

Y 




τA

τA
e





1/2

 = 
1

(1 − p) + p(X/S)t=τA

  , (30)

where

Y = 




t1 + τA
e

t1 + τA





2/3 (S)t=τA

(S)t=τA(e)
  . (31)

It is interesting to note the different behaviour of curves plotted in Fig. 2 for p < 1
and p ≥ 1. When p < 1, Y(τA/τA

e )1/2 increases with χτA
 towards its asymptotic value

1/(1 − p), according to Eqs (30) and (A11).
Conversely, for p ≥ 1, Y(τA/τA

e )1/2 increases continuously with χτA
, although its rise

for p > 1 is faster than for p = 1. Note that for p > 1, τA exists only for those values of
p which satisfy the following condition (see (Eq. (30))

p
p − 1

 > 



S
X



t=τA

 . (32)

1.0

0.9

0.8

0.7
0               20              40              60              80

τB/τB
e

χt = τB

1

2

FIG. 1
Curves τB/τB

e vs χt = τB
 deduced from Eq. (18)

for a DME; ξ = 0, Ω1 = 3 (1), Ω1 = 0 (2)
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FIG. 2
Dependence of Y(τA/ τA

e )1/2 on χt = τA
 for an

SMDE from Eqs (30) and (A19), ξt = τA
= 0.2,

Ωt = τA
 = 2. The p values are: 0.50 (1), 1.00 (2),

1.20 (3), 1.25 (4)
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Hence, from Fig. 2 we can deduce for p = 1.25 that τA exists for values χt = τA
 < 20, in

agreement with Eq. (32).
Equation (17) can also be written in the form

J(τA) = 
nF A0D

1/2CA
∗

2aI0
  , (33)

where

J(τA) = 
τA

1/2

(t1 + τA)2/3 [(1 − p)S + pX]t=τA
  . (34)

Thus, by means of linear regression of J(τA) vs (nF A0D
1/2CA

∗ )/(2I0), it is possible to
determine the anodic reaction order a of the anodic reaction from the value of the slope,
according to Eq. (33).

Potential–Time Response

Figure 3 shows the dependence of E–t curves on the rate constant k for a reversible
process, when τA (Fig. 3a) and τB (Fig. 3b) are reached. This dependence is illustrated
for a fixed value of p = 0.5, since these curves are affected by k for any p value. Note
that τA increases with k (Fig. 3a), whereas τB decreases (Fig. 3b). its minimum value

FIG. 3
The influence of k on the E–t (∆E = E(t) – Ec

0′) curves at an SMDE for a reversible charge transfer
reaction. Parameters: p = 0.5, ω = 1 s–1, ξ0 = 0.1 s–1/2, a = b = 1 and T = 298 K; for a: NSMDE = 3.2 s–1/2,
k (s–1): 1 . 10–2 (1), 1 (2), 3 (3), 10 (4), 1 . 102 (5), 1 . 104 (6); b: NSMDE = 0.7 s–1/2, k (s–1): 1 . 10–2 (1),
1 . 10–1 (2), 5 . 10–1 (3), 1 (4), 3 (5), 10 (6), 1 . 102 (7)
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corresponds to π/ω according to Eqs (18) and (A11) and it is independent of p (as
follows from Eq. (18)).

In Fig. 4 we show the influence of concentration of electroactive species CA
∗  for a

reversible process when τB is reached and NDME t s
2/3 (Eq. (13)) remains constant. As can

be deduced from Eq. (21), these curves are shifted to more positive potentials with
growing CA

∗  for a > b (Fig. 4a) whereas the opposite effect is observed for a < b (Fig. 4b).
The E–t curves are shown for a plane electrode, for a = 2, b = 1, p = 0.5 (refs17,18) in Fig. 4a
and for a plane electrode when a = 1, b = 2 and p = 1.2 (refs11,16) in Fig. 4b.

The influence of kc
0 is shown in Fig. 5 for p = 1, k = 2 s–1, a = 2, b = 1, CA

∗  = 1 mmol l–1,
n = 2 and α = 0.5. From these curves and from Eqs (19), (20) and (24)–(27) it
follows that the process becomes totally irreversible for kc

0 ≤  10–4 (mmol l–1)–1/2 cm s–1.
Under these conditions the potential–time response can be described by Eqs (24)–(27).

The influence of chemical kinetics is shown in Fig. 6 for irreversible charge transfer
reaction and τB. The influence of k is similar to that found for a reversible process (Fig. 3b)
with the exception of a shoulder8 disappearing at high values of k (curve 6).

The effects exerted by the electrode curvature for both SMDE and DME are more
appreciable when species A is depleted at the electrode surface. These effects are less
pronounced when oxidation transition time τB is observed instead.

In this technique the double layer effect is less markable at low frequencies and at
higher concentrations of electroactive species. For this reason the frequencies of the
alternating current considered in this paper are not higher than 2 Hz. Moreover, it is

FIG. 4
The influence of CA

∗ on the E–t curves at a plane electrode for a reversible charge transfer reaction.
Parameters: k = 10–2 s–1, T = 298 K, CA

∗  (mmol l–1): 1.0 (1), 2.5 (2), 5.0 (3). Conditions for a: p =
0.5, ω = 1.2 s–1, NSMDE = 0.5 s–1/2, a = 2, b = 1; for b: p = 1.2, ω = 0.8 s–1, NSMDE = 1.5 s–1/2, a = 1,
b = 2

250

200

150

100

   50

  0
0               1                   2                 3                 4

n ∆E
mV

t, s

1

2

3

a
 300

 200

 100

   0

–100

0            1            2            3            4            5

n ∆E
mV

t, s

1
2

b

3

1520 Alcaraz, Molina:

Collect. Czech. Chem. Commun. (Vol. 62) (1997)



interesting to point out that these effects are lower when the electrode sphericity in-
creases, i.e., as the electrode radius becomes smaller.

Finally, it is also possible to determine the electrochemical kinetic parameters α and
kc

0 from Eqs (24)–(27) by means of linear regression of E(t) vs ln gC and/or E(t) vs ln gA

plots, although in the latter case the order b must be known beforehand.

CONCLUSIONS

As shown above, the application of a sinusoidal current provides interesting informa-
tions for the study of regeneration mechanisms. It allows us to work always under
conditions where the reduction (τA) or oxidation (τB) transition time is reached, in con-
trast to other electrochemical techniques. Although both transition times can be used
for determining the rate constant of the chemical step, it seems more convenient to use
the oxidation transition time τB since it is independent of the regeneration fraction
values besides most experimental parameters, such as alternating current amplitude I0.
Moreover, once the homogeneous kinetic constant is known, it is possible to determine
the regeneration fraction and the anodic reaction order from the reduction transition
time. In this way the use of sinusoidal current, which provides the information about τB

(besides τA), seems appropriate for the study of regeneration processes and for distin-
guishing them from other mechanisms.

 300
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–200
0             1            2             3            4            5
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1
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3

4

5

FIG. 5
Electrochemical reversibility effects on the E–t
curves at a DME for a total regeneration of
species A (i.e. p = 1); ω = 0.8 s–1, t1 = 1 s,
NDME ts

2/3 = 1.4 s1/6, D = 10–5 cm2 s–1, ξ0 = 0.1 s–1/6,
a = 2, b = 1, n = 2, α = 0.5, k = 2 s–1, CA

∗  = 1
mmol l–1, T = 298 K. The values of k c

0 in
(mmol l–1)–1/2 cm s–1 are: 10–1 (1), 10–3 (2), 5 . 10–4

(3), 10–4 (4), 10–5 (5)
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0              1              2              3              4
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345
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FIG. 6
Chemical rate constant effects on the E–t
curves at an SMDE for a totally irreversible
charge transfer step when p = 0.5, ω = 1 s–1,
NSMDE = 0.7 s–1/2, D = 10–5 cm2 s–1, ξ0 = 0.1 s–1/2,
a = b = 1, α = 0.5, n = 2, kc

0 = 10–5 cm s–1 and
T = 298 K. The values of k (s–1); 10–2 (1), 10–1

(2), 5 . 10–1 (3), 1 (4), 3 (5), 10 (6)
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The influence of the homogeneous rate constant on reduction and oxidation transi-
tion times is different. Thus, τA increases with k, whereas τB decreases to its minimum
value τB = π/ω.

APPENDIX

The S and X series for a DME, obtained for the expanding sphere electrode, are defined
as

S = S(ξ,β,Ω) = ∑ 
n=0

∞
(−1)n Ω2n+1

(2n + 1)!  J0,n(ξ,β) (A1)

X = X(ξ,β,χ,Ω) = exp (−χ)∑ 
j,n

∞
(−1)n Ω2n+1

(2n + 1)! j!  χjJj,n(ξ,β)  , (A2)

where J0,n(ξ,β) may be considered as a particular case of Jj,n(ξ,β), for j = 0, whose
general expression is given by

Jj,n(ξ,β) = Jj,n
(0)(β) − ξ Jj,n

(1)(β) + ξ2 Jj,n
(2)(β) (A3)

Jj,n
(0)(β) = 

1
p2j+4n+3

 


1 + 

β3

3(2j + 4n + 5) + 
7
18

 
β6

(2j + 4n + 5)(2j + 4n + 7) + 

+ 



20
27

 
β9

(2j + 4n + 5)(2j + 4n + 7)(2j + 4n + 9) + …




(A4)

Jj,n
(1)(β) = 

1
4(j + 2n + 2) + 

β3

8(j + 2n + 2)(j + 2n + 3) + 

+ 
3
32

 
β6

(j + 2n + 2)(j + 2n + 3)(j + 2n + 4) + … (A5)

Jj,n
(2)(β) = 

1
p2j+4n+3

 




1
2(2j + 4n + 5) + 

β3

(2j + 4n + 5)(2j + 4n + 7) + …  . (A6)

Ω, χ, ξ and β are dimensionless parameters defined by relations
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Ω = ωt (A7)

χ = kt (A8)

ξ = 
2(Dt)1/2

r0
(A9)

β = 
t

t1 + t
 = 

Ω
Ω1 + Ω  ;   Ω1 = ωt1  . (A10)

When the blank period t1 does not exist (t1 = 0) the response can be deduced from Eqs
(11) and (12) by setting β = 1 in Eqs (A1)–(A6).

The X series has an asymptotic solution, which may be obtained when the steady-state
approximation is applied. Thus, for large values of χ, the X series is simplified to the
following expression

X = 
sin (ωt)
2χ1/2      (χ ≥ 20) (A11)

which remains valid for any type of electrode such as DME, SMDE and stationary
plane electrode.

Conversely, for small values of the argument the following limit is obtained

lim
χ−>0

 X = S  . (A12)

As indicated above, the S and X series have been deduced for a DME adopting the
expanding sphere electrode model. Nevertheless, they allow us to deduce relations
corresponding to a static spherical electrode (SMDE) and a planar electrode (PE) by the
following procedure:

Static Pherical Electrode

The response for a static electrode of area A = A0t1
2/3 can be found assuming t1 >> t (or

β = 0) in Eqs (A1)–(A6) and by substituting NDME for NSMDE in Eqs (11), (12) and
(19)–(27), where
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NSMDE = 
2I0

nF AD1/2CA
∗   . (A13)

The S and X series for an SMDE are then simplified to

SSMDE = ∑ 
n=0

∞
(−1)n Ω2n+1

(2n + 1)!  




1
p4n+3

 − 
1

4(2n + 2) ξ + 
1

2p4n+3(4n + 5) ξ
2 + …





(A14)

XSMDE = exp (−χ) ∑ 
j,n

∞
(−1)n Ω2n+1

(2n + 1)! j!  χj 




1
p2j+4n+3

 − 
1

4(j + 2n + 2) ξ + 

+ 




1
2p2j+4n+3(2j + 4n + 5) ξ

2 + …



  . (A15)

Regarding the transition times of oxidized and reduced species, Eq. (17) for this
electrode is simplified to

τA
1/2 = 

nF AD1/2CA
∗

2aI0[(1 − p)S + pX]t=τA

  , (A16)

whereas Eq. (18), corresponding to τB, remains valid.
The condition CA(r0,τA) = 0 is valid when NSMDE is higher than a fixed minimum

value given by

Nmin = 




2I0

nF AD1/2CA
∗



min

 = 
1

aHmax
(A17)

see Eqs (11) and (A13), where Hmax is the absolute maximum of the H function vs time
defined as

H = [(1 − p)S + pX] t1/2  . (A18)

Finally, Y in Eq. (30) is then given by

Y = 
(S)t=τA

(S)t=τA
e

(A19)
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and Eq. (A16) may also be written in the form

J(τA) = 
nF AD1/2CA

∗

2aI0
  , (A20)

where

J(τA) = τA
1/2 [(1 − p)S + pX]t=τA

  . (A21)

Plane Electrode

The response for this static electrode of area A = A0t1
2/3 may be obtained from that

deduced above for an SMDE by setting ξ = 0 in Eqs (A14) and (A15).

LIST OF SYMBOLS

a, b cathodic and anodic reaction orders
A(ts) time-dependent area for a DME (A = A0t s2/3)
A0 electrode area for ts = 1s (A0 = (4π)1/3(3mHg/d)2/3)
CA concentration of species A
CB concentration of species B
Ec

0′ formal potential of the electrode reaction (in concentration scale)
E(t) time-dependent electrode potential
k rate constant corresponding to the chemical step
kred, kox electrode reaction rate constants for the reducing (cathodic) and the oxidizing (anodic)

reactions, respectively
kc

0 conditional rate constant of an electrode reaction
mHg, d rate of flow and density of mercury
n number of electrons transferred in the charge transfer step
p regeneration fraction
pj 2Γ(1 + j/2)/Γ((1 + j)/2)
r distance from the center of the electrode
r0 electrode radius at time ts for a DME (r0 = ζts1/3) or fixed electrode radius for an SMDE
t time elapsed between the application of the alternating current and the potential measu-

rement
t1 blank period used, optionally, only with non-stationary electrodes (DME)
ts = t1 + t
α, α′ cathodic and anodic transfer coefficients
β = t/(t1 + t) = Ω/(Ω1 + Ω)
Γ Euler gamma function
ζ radius of DME for ts = 1s (= (3mHg/4πd)1/3)
ν stoichiometric number for the electrode reaction
ξ dimensionless parameter (ξ = 2(Dt)1/2/r0)
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ξ0 = ξ/t1/2 for an SMDE and ξts1/3/t1/2 for a DME
τA reduction transition time of species A
τB oxidation transition time of species B
τA

e reduction transition time of species A for an E mechanism
τB

e oxidation transition time of species B for an E mechanism
χ = kt
ω angular fraquency of alternating current (2πf where f is the conventional frequency in Hz)
Ω = ωt
Ω1 = ωt1
Other symbols have conventional meaning.
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